Triebel–Lizorkin space estimates for multilinear operators of sublinear operators

نویسندگان

  • LIU LANZHE
  • Liu Lanzhe
چکیده

Let T be the singular integral operator, a well-known result of Coifman, Rochberg and Weiss [6] which states that the commutator [b,T ] = T (b f )− bT f (where b ∈ BMO) is bounded on Lp(Rn)(1 < p < ∞). Chanillo [1] proves a similar result when T is replaced by the fractional integral operator. In [9,11], these results on the Triebel–Lizorkin spaces and the case b∈Lipβ (where Lipβ is the homogeneous Lipschitz space) are obtained. The main purpose of this paper is to study the continuity for some multilinear operators related to certain convolution operators on the Triebel–Lizorkin spaces. In fact, we shall obtain the continuity on the Triebel–Lizorkin spaces for the multilinear operators only under certain conditions on the size of the operators. As applications, we prove the continuity of the multilinear operators related to the Littlewood–Paley operator and Marcinkiewicz operator on the Triebel–Lizorkin spaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuity of Multilinear Operators on Triebel-lizorkin Spaces

Let T be the Calderón-Zygmund singular integral operator, a well-known result of Coifman et al. (see [6]) states that the commutator [b,T]( f ) = T(b f )− bT( f ) (where b ∈ BMO) is bounded on Lp(Rn) (1 < p <∞); Chanillo (see [1]) proves a similar result when T is replaced by the fractional integral operator; in [8, 9], these results on the TriebelLizorkin spaces and the case b ∈ Lipβ (where Li...

متن کامل

Multilinear Analysis on Metric Spaces

The multilinear Calderón–Zygmund theory is developed in the setting of RD-spaces, namely, spaces of homogeneous type equipped with measures satisfying a reverse doubling condition. The multiple-weight multilinear Calderón–Zygmund theory in this context is also developed in this work. The bilinear T1-theorems for Besov and Triebel–Lizorkin spaces in the full range of exponents are among the main...

متن کامل

Lipschitz Estimates for Multilinear Commutator of Littlewood-paley Operator

Let T be the Calderón-Zygmund operator, Coifman, Rochberg and Weiss (see [4]) proves that the commutator [b, T ](f) = bT (f) − T (bf)(where b ∈ BMO(R)) is bounded on L(R) for 1 < p <∞. Chanillo (see [2]) proves a similar result when T is replaced by the fractional operators. In [8, 16], Janson and Paluszynski study these results for the Triebel-Lizorkin spaces and the case b ∈ Lipβ(R), where Li...

متن کامل

Continuity for some multilinear operators of integral operators on Triebel-Lizorkin spaces

The continuity for some multilinear operators related to certain fractional singular integral operators on Triebel-Lizorkin spaces is obtained. The operators include Calderon-Zygmund singular integral operator and fractional integral operator. 1. Introduction. Let T be a Calderon-Zygmund singular integral operator; a well-known result of Coifman et al. (see [6]) states that the commutator [b, T...

متن کامل

Boundedness of multilinear operators on Triebel-Lizorkin spaces

The purpose of this paper is to study the boundedness in the context of Triebel-Lizorkin spaces for some multilinear operators related to certain convolution operators. The operators include Littlewood-Paley operator, Marcinkiewicz integral, and Bochner-Riesz operator. 1. Introduction. Let T be a Calderon-Zygmund operator. A well-known result of Coif-man et al. [6] states that the commutator [b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003